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1

Historical survey†

The mathematical approximation method which, since the breakthrough of quan-
tum mechanics, has usually been called the WKB method, has in reality been
known for a very long time. The method describes various kinds of wave motion
in an inhomogeneous medium, where the properties change only slightly over one
wavelength, and it also provides the connection between classical mechanics and
quantum mechanics. To a surprisingly large extent it can already be found in an
investigation by Carlini (1817) on the motion of a planet in an unperturbed elliptic
orbit. After that the method was independently developed and used by many peo-
ple. The important connection formulas were, however, missing, until Rayleigh
(1912) very implicitly and Gans (1915) somewhat more explicitly derived one of
them, which was later rediscovered independently by Jeffreys (1925), who also
derived another connection formula (although not in quite the correct form), and
by Kramers (1926).

1.1 Development from 1817 to 1926‡

1.1.1 Carlini’s pioneering work

At the beginning of the nineteenth century Carlini (1817) (Fig. 1.1.1) treated an
important problem in celestial mechanics. He considered the motion of a planet in
an elliptic orbit around the sun, with the perturbations from all other gravitating
bodies neglected. Using a polar coordinate system in the plane of the planetary
motion, with the origin at the sun, one can express the polar angle as 2π t/T plus
an infinite series containing sines of integer multiples of 2π t/T , wheret is the

† As a complement to our presentation of the historical development we refer the reader to McHugh (1971) and
Schlissel (1977).

‡ Section 1.1 is a somewhat revised version of the article by Fr¨oman and Fr¨oman (1985a) ‘On the history of
the so-called WKB-method from 1817 to 1926’ inProceedings of the Niels Bohr Centennial Conference,
Copenhagen, March 25–28, 1985.
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2 1 Historical survey

Figure 1.1.1 Francesco Carlini was born on 7 January 1783 and in 1799 became a student
at the Brera Observatory in Milan. In 1832 he became head of the observatory and worked
there until his death on 29 August 1862. This portrait is in the Brera Observatory in Milan.

time counted from a perihelion passage, i.e., from a moment when the planet is
closest to the sun, andT is the time for one revolution of the planet in its orbit.
The problem treated by Carlini was to determine the asymptotic behaviour of the
coefficients of the sines in this series for large values of the summation index. In
his treatment of this problem Carlini had to investigate a functions of a variable
x. This function, which Carlini defined by a power series inx, is proportional to
the function that is now called a Bessel function of the first kind, with the index
p and the argument proportional topx. Carlini, who needed a useful approximate
formula for this function when its argument is smaller than its orderp, which tends
to infinity, showed thats(x) satisfies a linear, second-order differential equation
containing the large parameterp. In this differential equation Carlini introduced a
new dependent variabley by putting

s = exp

(
1

2
p

x∫
ydx

)
. (1.1.1)

Then he expanded the functiony in inverse powers ofp. When Carlini introduced
this expansion into the differential equation foryand identified terms containing the
same power of 1/p, he obtained recursive formulas which give what is now usually
called the WKB approximation, with higher-order terms included, for the solution
of the differential equation satisfied bys(x). In explicit form he gave essentially
the second-order WKB approximation for the solution in a classically forbidden
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region (in the language of quantum mechanics). If we express Carlini’s result for
the functions(x) in terms of the Bessel functionJp(ξ ), whereξ is proportional to
px, we obtain

Jp(ξ ) = ξ p

2p p!
exp

{
p

[(
1 − ξ2

p2

)1/2

− 1 − ln
1 + (1 − ξ2/p2)1/2

2

]

− 1

2
ln

(
1 − ξ2

p2

)1/2

+ 1

p

[
1

12
+ 1

8(1− ξ2/p2)1/2

− 5

24(1− ξ2/p2)3/2

]
+ · · ·

}
, (1.1.2)

where 0≤ ξ < p, ξ is proportional top, and p(>0) is large. Formula (1.1.2) is
essentially equivalent to the next-to-lowest order of the asymptotic formula, de-
rived almost a century later by Debye (1909), for the Bessel functionJp(ξ ) when
0 ≤ ξ < p, ξ is proportional top, andp→∞. We also remark that if in essential
respects one follows Carlini’s procedure to derive (1.1.2), but uses modern devel-
opments of the phase-integral technique, one can in a simple way obtain asymptotic
formulas (P. O. Fr¨oman, Karlsson and Yngve 1986), which are essentially equiv-
alent to those derived by Debye with the aid of the more complicated method of
steepest descents.

Using the language of quantum mechanics, one can say that in the part of the work
by Carlini (1817) that has been described above, Carlini obtained an approximate
expression for the solution of the radial Schr¨odinger equation in the classically
forbidden region, in the absence of aphysicalpotential. Because of the way in
which the large parameterpappears in the differential equation for the functions(x),
Carlini’s solution remains valid asx → 0 in any order of approximation. Carlini
thus automatically achieved in any order of approximation the result that Kramers
(1926) achieved in the first-order WKB approximation by empirically replacing
l (l + 1) by (l + 1/2)2, wherel is the orbital angular momentum quantum number.

1.1.2 The work by Liouville and Green

In connection with a heat conduction problem, Liouville (1837) treated an ordinary,
linear, second-order differential equation which he transformed into a differential
equation of the Schr¨odinger type. Then he arrived at what one in quantal language
now usually calls the first-order WKB approximation in a classically allowed region.

Green (1837) considered the motion of waves in a non-elastic fluid confined in
a canal with infinite extension in thex-direction and with small breadth and depth,
both of which may vary slowly in an unspecified way. The problem is described
by a partial differential equation which is of second order with respect to both the
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coordinatex and the timet. Green obtained an approximate solution which, for
the particular case in which its time dependence is described by a sine or cosine
function, reduces essentially to the first-order WKB approximation in a classically
allowed region.

As regards the work so far mentioned, it should be noted that Carlini did not treat
a problem concerning wave motion, but one concerning planetary motion, and that
he considered (in quantal language) a classically forbidden region. Liouville treated
a problem concerning heat conduction, and Green treated a problem concerning
waves in a fluid. In quantal language, both of these authors considered a classically
allowed region.

1.1.3 Jacobi’s contribution towards making Carlini’s work known

The famous astronomer Encke, after whom a comet is named, drew Jacobi’s atten-
tion to the work by Carlini (1817), and Jacobi (1849) published a paper concerning
improvements and corrections to Carlini’s work. In this paper Jacobi characterized
Carlini’s work as excellent and instructive, and he considered the problem treated
in the main part of Carlini’s publication as one of the most difficult problems of
its class. Although Jacobi pointed out and corrected mistakes made by Carlini, he
also pointed out that all the essential difficulties in the solution of the problem had
been vanquished by Carlini (1817), and that Carlini’s final result would have been
correct if he had not made trivial mistakes in his calculations.

In 1850 Jacobi published a translation from Italian into German, with critical
comments and extensions, of Carlini’s investigation (Carlini 1850). In this publi-
cation Jacobi again emphasized that, although the work by Carlini (1817) contains
many mistakes, and the final results are incorrect, this work, because of the method
used there and the boldness of its composition, is still indisputably one of the
most important works concerning the determination of the values of functions of
large numbers. More than three decades after the original publication of Carlini’s
work, Jacobi thus considered it highly desirable to republish it with the necessary
improvements and extensions included.

1.1.4 Scheibner’s alternative to Carlini’s treatment of planetary motion

The problem in celestial mechanics, which Carlini had treated by starting from
a formula given by Lagrange, was later solved more generally and in much sim-
pler ways by Scheibner (1856a,b), who attacked the problem from quite differ-
ent starting points. In his first paper Scheibner (1856a) used a peculiar and very
general method, which recommends itself by its brevity and ease of calculation.
In his second paper Scheibner (1856b) used Cauchy’s powerful theory of complex
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integration. As an indication of the importance of Scheibner’s papers we mention
that, almost a quarter of a century after they had first been published, the first paper
(Scheibner 1856a), originally written in English, was republished in German trans-
lation (Scheibner 1880a), and the second paper (Scheibner 1856b), originally writ-
ten in German, was republished in abbreviated form (Scheibner 1880b). Scheibner
solved the actual problem in celestial mechanics much more simply and more satis-
factorily than Carlini, but the more complicated investigation by Carlini yielded the
very fundamental result that is now usually called the WKB approximation of arbi-
trary order. We mention Scheibner’s work only to demonstrate the continued interest
in the problem concerning planetary motion initiated by Carlini. The methods used
by Scheibner are otherwise not related to the history of the so-called WKB method.

1.1.5 Publications 1895–1912

In his well-known book on hydrodynamics, Lamb (1895) treated (on pp. 291–6)
the propagation of waves in a canal of gradually varying section on the basis of
the investigation by Green (1837). Apparently unaware of the results obtained ear-
lier by other authors, de Sparre (1898) derived essentially what is now called the
second-order WKB approximation for a second-order differential equation. From
a purely mathematical point of view, Horn (1899a,b) considered, for real values
of the independent variable, the asymptotic solution of a linear, second-order dif-
ferential equation containing a large parameter. Schlesinger (1906, 1907) gener-
alized Horn’s mathematical investigations by treating, for complex values of the
independent variable, a linear system of first-order differential equations contain-
ing a large parameter. Referring to the method used by Green (1837), Birkhoff
(1908) continued Horn’s and Schlesinger’s work by investigating mathematically
the asymptotic character of the solutions of certain arbitrary-order linear differ-
ential equations containing a large parameter. With practical problems in mind,
Blumenthal (1912) considered the asymptotic solution of a linear, second-order
differential equation containing a large parameter. In a different way than Horn, he
proved the existence of asymptotic approximations and obtained explicit estimates
for their accuracy. Finally he applied his results to the differential equation for the
spherical harmonics.

1.1.6 First traces of a connection formula

In a paper concerning the propagation of waves through a stratified medium,
Rayleigh (1912) treated the one-dimensional time-independent wave equation by
writing the solution as an amplitude times a phase factor. He found the exact re-
lation between amplitude and phase (his eq. (73)), but he did not point out the
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great importance of this relation, which since 1930 has been used with great suc-
cess by several authors for the numerical solution of differential equations of the
Schrödinger type. Rayleigh obtained what is now generally known as the first-order
WKB approximation in a classically allowed region. By pursuing the approxima-
tions he also obtained the next correction to the amplitude (in approximate form)
and to the phase. Considering then the case of total reflection of waves due to a turn-
ing point, Rayleigh introduced into the wave equation a linear approximation in a
certain region around the turning point and was thus able to obtain an approximate
solution expressed as an Airy function in that region. When he used asymptotic
approximations for the Airy function, he obtained a result that is closely related to
a connection formula for the WKB approximation.

On the basis of Maxwell’s electromagnetic theory, Gans (1915) treated the prop-
agation of light in an inhomogeneous medium, where the index of refraction varies
slowly and depends only on one cartesiancoordinate. He obtained thefirst-order
WKB approximation for the solution of the one-dimensional wave equation. When
considering total reflection, Gans approximated the coefficient function in the dif-
ferential equation by a linear function of the above-mentioned cartesian coordinate
in the region around the turning point that gives rise to the total reflection. He was
thus able to express the solution of the wave equation on each side of the turning
point approximately in terms of Hankel functions of the order 1/3. Matching these
approximate solutions at the turning point, and using asymptotic approximations
for the Hankel functions on both sides of the turning point, Gans obtained a result
(see eqs. (69) and p. 726 in his paper) which, although not in quite explicit form, is
equivalent to the connection formula for the first-order WKB approximation that
starts from the exponentially small wave function in the region into which the light
penetrates only as an evanescent wave. This is, in somewhat more explicit form,
the connection formula that Rayleigh (1912) had obtained.

1.1.7 Publications 1915–1921

In a paper dealing with certain hypotheses as to the internal structure of the earth
and the moon, Jeffreys (1915) obtained (on pp. 211–213) essentially the first-order
WKB approximation for the solution of a linear, second-order differential equation.

In an investigation concerning the aerodynamics of a spinning shell, Fowler,
Gallop, Lock and Richmond (1921) treated a system of two coupled, ordinary,
linear differential equations containing a large parameter, one of the equations
being inhomogeneous and of the second order, the other being homogeneous and
of the first order. Referring to the papers by de Sparre (1898), Horn (1899a,b),
Schlesinger (1906, 1907) and Birkhoff (1908), Fowleret al.(1921) investigated the
asymptotic expansion of the solution of the above-mentioned system of differential
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equations for large values of the parameter. In connection with this problem, the
authors considered in particular a homogeneous, linear differential equation of
the second order which they solved by writing the solution as the product of an
amplitude and a phase factor. Finding the exact relation between amplitude and
phase, they expressed the phase in terms of the amplitude which they obtained as
an asymptotic expansion in inverse powers of the square of the large parameter.
The authors made the important remark that by separating the solution correctly
into the product of an amplitude and a phase factor they gained the advantage over
other methods that they obtained in one step a solution with the error inversely
proportional to the square of the large parameter, whereas this requires two steps
in the usual procedures.

1.1.8 Both connection formulas are derived in explicit form

Referring to the above-mentioned work by Green, Lamb, Horn, Jeffreys and Fowler
et al., Jeffreys (1925) derived what is now usually called the WKB approximation
for the solution of an ordinary, homogeneous, linear differential equation of the
second order. In the region of a turning point Jeffreys, like Rayleigh and Gans,
introduced a linear approximation into the differential equation and was thus able
to express the solution there approximately in terms of Bessel functions of the order
1/3. Using asymptotic approximations for these functions, Jeffreys obtained the
previously mentioned connection formula and another connection formula which
was, however, not given in quite the correct form. The question of the one-directional
nature of the connection formulas was not clarified until later.

1.1.9 The method is rediscovered in quantum mechanics

Brillouin (1926a,b) established, for a system of particles, the connectionbetween
the Schr¨odinger equation of quantum mechanics and the Hamilton–Jacobi equation
of classical mechanics, while for the radial Schr¨odinger equation Wentzel (1926)
and Kramers (1926), without knowing the work by previous authors, arrived at
part of the results obtained in the course of the development described above.
Kramers also pointed out that in the first order of the approximation it is some-
times convenient to replacel (l + 1) by (l + 1/2)2, wherel is the orbital angular
momentum quantum number. These results turned out to be extremely useful in ap-
plications of the new quantum theory and became known by the name of the WKB
method. However, Brillouin, Wentzel and Kramers contributed hardly anything new
to the mathematical approximation method that had already been found by previous
authors, as described in this short historical review. Briefly speaking one can say that
the so-called WKB method consists of the use of Carlini’s approximation, which
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he derived in arbitrary-order approximation, and Jeffreys’s connection formulas,
which he derived in the first-order approximation. For the radial Schr¨odinger equa-
tion it also involves Kramers’s modification of the first-order approximation by the
replacement ofl (l + 1) by (l + 1/2)2.

Since the publication of the papers by Brillouin (1926a,b), Wentzel (1926) and
Kramers (1926) the method has been called the WKB method by most writers in
theoretical physics, though this is not a very appropriate name. There are, how-
ever, some authors who have used more suitable names. It has thus been called the
asymptotic approximation method by B. Swirles Jeffreys and the Liouville–Green
method by H. Jeffreys and Olver and also by some other authors. Referring to the
historical development described here we find it most natural that the so-called
WKB approximation of arbitrary order (in which the whole asymptotic expan-
sion is placed in the exponent of the exponential function, as one did for more
than three decades after the publication of the papers by Brillouin, Wentzel and
Kramers) should be called the Carlini approximation, and that the usual connection
formulas for the first order of that approximation (associated with a well-isolated
turning point) should be called Jeffreys’ connection formulas. When the present
authors expressed this opinion to Professor Clifford Truesdell some years ago, he
replied that his teacher, Professor Bateman, famous for the California Institute of
Technology Bateman Manuscript Project (1953, 1954, 1955), always used the name
Carlini approximation instead of WKB approximation. In the present book we shall
sometimes use the name Carlini approximation or Carlini (JWKB) approximation,
in order to remind the reader of the origin of the approximation. However, we shall
also use the name JWKB approximation or WKB approximation.

1.2 Development after 1926

Though the formulas of the WKB method became known to physicists in the
1920s, there were still a great number of questions to be answered concerning their
accuracy, their range of applicability and, especially, the properties of the connection
formulas. The problems were treated with varying rigour by many people.

Zwaan (1929) treated the connection problem in a new way. His idea was to
allow the independent variable in the differential equation to take complex values
and to derive a connection formula by tracing the solution in the complex plane
around the critical point. To quote Birkhoff (1933): ‘Zwaan’s treatment is extremely
suggestive, although lacking in essential respects’. An attempt to put Zwaan’s
method on a rigorous basis was made in a well-known paper by Kemble (1935);
see also Kemble (1937). He transformed the original linear differential equation
of the second order in a very convenient way to a system of two linear differential
equations of the first order, which he integrated by an approximate method. Furry
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(1947) used Zwaan’s (1929) approach for the treatment of Stokes’s phenomenon
and derived the connection formulas by a new method. He also calculated the
normalization integral for a bound state without assuming the quantum number to
be large.

The question concerning the one-directional nature of the connection formulas
associated with a turning point led to a well-known debate between Langer (1934)
and Jeffreys (1956). Their dispute was, however, due to misunderstandings. In fact,
they both asserted that the connection formulas are one-directional. Discussions
concerning the connection formulas were later taken up by Fr¨oman and Fr¨oman
(1965, 1998), Dingle (1965, 1973), Berry and Mount (1972) and Silverstone (1985).
The confusion concerning the properties of the connection formulas derives from
a lack of rigour in the very formulation of the connection problem.

Heading (1962) published the first book that was completely devoted to the WKB
method. In the preface he wrote ‘. . . it is surprising that the developmentof this
technique over the last fifty years has been the occasion of so much error, criticism
and dispute. Moreover, the treatment of the subject in the literature ranges from the
ridiculously simple void of all rigour to the most sophisticated, the former hardly
deserving mention and the latter not forming part of what is commonly known as
the W. K. B. J. method’ and somewhat later ‘. . . its name is known to many but its
actual technique is known to but few.’ Heading aimed at presenting this technique
in his book. However, unsatisfactory elements remained in the method.

In spite of the abundant literature, at the beginning of the 1960s there still was
not a convenient method for obtaining definite limits of error in more general cases,
and Heading (1962), see his p. 59, expressed the opinion that ‘This vagueness must
be accepted as one of the inherent weaknesses of the phase-integral method’. The
problem of obtaining limits of error is not only of academic or mathematical interest
but is especially important in some physical applications, where lack of rigour may
imply that one cannot have confidence in the results.

Using as a starting point the ideas introduced by Zwaan (1929) and Kemble
(1935), the present authors found that the system of two first-order differential
equations introduced by Kemble has an exact solution in the form of fairly simple
convergent series. Exploiting this result, we developed in 1960–4 a new, rigorous
method for handling the connection problems for the so-called WKB approxima-
tion of the first order and modifications of it. The study of connection problems was
thereby transformed to the study of a certain matrix, theF-matrix, the elements
of which were given by convergent series. This method, which is also powerful
in intricate and complicated applications, was presented in a monograph (Fr¨oman
and Fröman 1965). N. Fr¨oman (1966b) generalized the treatment there and showed
that one could start with an ordinary differential equation of arbitrary order, as-
sume a set of functions representing approximate solutions, and derive an exact
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solution of the original differential equation that could be used for solving con-
nection problems. An advantage of the approach in these publications is that one
works with an exact solution and makes all approximations in the final formulas, yet
has a close contact with the approximate formulas in all steps of the calculations.
Fröman and Fr¨oman (1965) provided a sound basis for handling the connection
problems of the first-order WKB approximation and led to satisfactory estimates of
the accuracy of that approximation. Soon after its publication, Olver (1965a,b) pub-
lished related estimates, which he had derived quite independently using another
approach.

In the 1960s considerable interest was focused on the study of modifications
of the WKB approximation in higher orders with the purpose of obtaining an
approximate solution of the radial Schr¨odinger equation that remains valid at the
origin. Choi and Ross (1962) and Krieger and Rosenzweig (1967) gave important
contributions to the solution of thisproblem, but they did not give an explicit, simple
asymptotic expression of arbitrary order for the wave function. Such an asymptotic
expression was given by Fr¨oman and Fr¨oman (1974a,b) with the derivation of
the phase-integral approximation generated from an unspecified base function.
This new approximation, which is related to the WKB approximation, although
with important advantageous differences, is described briefly in Section 2.2 of the
present book and in detail in Chapter 1 of Fr¨oman and Fr¨oman (1996).

As already mentioned, Jeffreys (1925) derived for the first-order WKB approxi-
mation connection formulas associated with a turning point, but to the authors’
knowledge no one derived corresponding higher-order connection formulas.
N. Fröman (1970) derived for an arbitrary-order phase-integral approximation con-
nection formulas associated with a turning point, which later turned out to be valid
also for the phase-integral approximation generated from an unspecified base func-
tion. These general connection formulas contain the phase integrandq(z) and the
phase integralw(z) = ∫ z

t q(z)dz, wheret is the turning point, in the same way
for any order of the phase-integral approximation, which was not at all clear until
the arbitrary-order connection formulas in question had actually been derived; the
connection formula for a real single-hump potential barrier, given by (3.45.5a,b),
(3.45.8), (3.45.9a) and (3.45.13), is, for instance, quite different in different orders
of approximation.

We also mention the development of phase-integral formulas not involving wave
functions for normalization integrals (Furry 1947; de Alfaro and Regge 1965
pp. 64–5; Yngve 1972; P. O. Fr¨oman 1974), expectation values (Delves 1963;
Dagens 1969; Siebert and Krieger 1970; N. Fr¨oman 1974) and matrix elements
(Fröman and Fr¨oman 1977; Fr¨oman, Fröman and Karlsson 1979; P. O. Fr¨oman
2000). The analytic matrix element formula for unbound states given by Fr¨oman,
Fröman and Karlsson (1979) yielded results of much higher accuracy than one could
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obtain numerically; see Section 3.43. Other situations in which phase-integral re-
sults were at least as accurate as results obtained numerically occurred for the Stark
effect in some levels of a hydrogen atom; see Section 3.48.

A supplementary quantity (related tõφ in the present book) that appears in the
connection formula for a real potential barrier was obtained in the first-order ap-
proximation by Ford, Hill, Wakano and Wheeler (1959) and in the first-, third- and
fifth-order approximations by Fr¨oman, Fröman, Myhrman and Paulsson (1972).
The corresponding supplementary quantityφ for a complex barrier was obtained
up to the thirteenth order of approximation by Fr¨oman, Fröman and Lundborg
(1996).

Fröman and Fr¨oman (1996) adapted the comparison equation technique, devised
chiefly by Cherry (1950) and Erd´elyi (1956, 1960), to the phase-integral technique in
order to be able to calculate analytic expressions for the supplementary quantities
(F-matrix elements, suitably called Stokes constants) needed in order to master
connection problems when transition points approach each other. We performed the
rather lengthy calculations up to the fifth order of the phase-integral approximation
generated from an unspecified base function. The formulas thus obtained can readily
be particularized to specific situations. Various applications were treated in adjoined
papers in Fr¨oman and Fr¨oman (1996) in order to illustrate the accuracy that can be
achieved in physical applications by means of the phase-integral method with the
Stokes constants obtained according to the comparison equation technique.

Three-dimensional phase-integral investigations have been published by Glaser
and Braun (1954, 1955) for a classically allowed region and by P. O. Fr¨oman (1957)
for a classically forbidden region. Work on multi-dimensional phase integrals goes
back to Maslov’s appendix in the Russian translation of Heading (1962). Further
work along these lines is described in Maslov and Fedoriuk (1981), but we shall
not discuss this approach here. Nor do we consider the phase-integral treatment
of coupled differential equations. In the present book we thus restrict ourselves to
considering problems that can be reduced to the treatment of a one-dimensional
differential equation of the Schr¨odinger type.




